
Problems when running Untrusted Java threads and ways to solve

them

Jiazhen Chen

jche117@ec.auckland.ac.nz

Department of Computer Science

University of Auckland, New Zealand

Abstract

The popularity and Java application and applets invite more hackers to break in to

the Java system. The main potential threats rose by Herzog and Shahmehri [1] are

unsafe termination, resource control and isolation between Java threads. This report

is focused on criticisms of the paper published by Herzog and Shahmehri. Several

criticisms has been raised and backed up by the book by McGraw and Felten[4] and

paper published by Felten[3]. The main criticism is that this paper has reviewed old

ideas which have been foreseen by the book [4] five years ago, and the authors did

not do a good job reviewing the old ideas. Another criticism is that the authors never

mentioned in detail how to prevent malicious thread and control what an untrusted

thread can do. Those two additional resources carried on the problems raised by [1]

and explained the suggestions to counter those attacks in detail.

1 Introduction:

Java thread system is known efficient because Java threads are designed to be

cooperative and friendly with each other. In comparison to the normal processes, the

Java threads require less overhead therefore requires less memory and computing

power to manipulate. To be cooperative, the access control between Java threads are

less restricted than the control between normal processes. The security between

threads therefore is also less controlled. This approach is based on the assumption of

“Java threads within one JVM are created by one application”. In other words, threads

that can manipulate each other are created by one application, so they suppose to trust

each other. This is true in the case of local Java application, but in case of network

applications such as Java Applet, RMI application and Java Servlet this is done in

different way which untrusted code is running with normal threads in a same

container. Herzog and Shahmehri have suggested three main potential threats when

running untrusted threats as a java thread which contained in the same JVM with

other normal threads. The problems were clearly presented and suggestions are given.

Several doubts have risen in my head after reading this paper. My main criticism is

the paper is reviewing the security problems which have been foreseen by McGraw

and Fenten five years ago or even longer. It is perfectly fine to review somebody’s

work. Herzog and Shahmehri however did a bad job explaining their solutions to the

problems because the solutions are too simple for readers to understand. My second

criticism is the authors have not mentioned the real harms that Java security issues can

cause to the system. A question “Why do we have to spent all the effort on some

problems that are not that serious” can be asked. Authors never mentioned the cost to

spend on building the security mechanism. My last criticism is that authors have

mentioned the problem “Isolation between the threads” and “resource control” as the

main problems, but the suggestions given to solve those problems is not explained in

details and no reference has been given for further research. The structure of this

paper is focused on those three criticisms. Section two reviews the Java virtual

machine and its relationships with Java processes and Java threads. Section three

review the problems identified in this paper. Section four focused on the first criticism:

The authors did a bad job reviewing the ideas more than five years ago. Section five

focused on the second criticism: The harms that caused by the problems listed in this

paper are not very serious therefore the solutions suggested by the authors are too

expensive to implement. Section six focused on the last criticism: The solutions to the

isolation problem and resource control problem presented in this paper are too simple

to understand. Solutions given by the user is too simple to convince the reader that

their suggestions can counter the problems. Section seven is the conclusion of this

paper.

2 Relationships between Java Virtual Machine, Process and Java Thread

Java Virtual Machine is a specification for an abstract computer [2]. Each time a Java

process is created, it is assigned to a JVM which acts like a real machine. The process

has the full control of the JVM‘s computer resources. This approach provides

isolation between each process and avoids malicious contact between processes. In

theory threads created by one process are contained within one JVM which other

threads have no accesses to. The threads can safely manipulate each other without

worrying about interventions from other untrusted threads. This approach is much

more efficient than normal process systems.

3 Problems

Consequences of running untrusted service as a thread can be serious. Based on the

findings of Herzog and Shahmehri [1], problems of running untrusted threads within

the same JVM with other threads can be summarized in three main points.

3.1 Safe Termination

If an untrusted thread is running within the same JVM, it could prevent other threads

from running. The reason for this to happen is “The stop method within the thread

class is not safe to use”. Therefore the system can not force the thread to terminate

once it is running indefinitely. Malicious thread can be intentionally written in infinite

loop, which keep them alive as long as they want. According Herzog and Shahmehri

[1], the execution environment will stay in a hung state if the malicious thread

running infinitely and system trying to shut it down or uninstall the application that

thread belongs to. Safe termination already been used as one of the most popular Java

applet attack on the internet. Herzog and Shahmehri provided little details of how the

attack can be organised.

3.2 Resource Control

According to Herzog and Shahmehri [1], Java has a good access control system. Once

the access is been granted, the thread can have the full control of system resources

been assigned to it. Therefore a malicious thread could try to get the permission and

use that permission to control all the resources, which prevent other threads running

duel to the lack of system resources. An example has been give by the author[1], if a

file “malicious.jar” is allowed to write to /tmp/a, it can fill the disk by write empty

data such as zero. Once the disk has been filled, no other threads could perform the

write command to that disk and also leads to system shut termination since there is no

disk space to store temporary system files.

If a normal thread has been granted the access and can not have the resources it wants,

the ability of Java threads can be greatly reduced. Authors mentioned little about how

to prevent untrusted code getting the access of complete system resources. This

approach will be later reviewed based on another author’s publication [3].

To summarize, resource control can be indeed a serious problem to Java system.

3.3 Isolation

 Isolation between Java threads is not completely secured. Herzog and Shahmehri[1]

suggests the class loading isolation mechanism provided by Java is not a perfect

isolation mechanism. The authors also suggested interference between Java threads

within the same JVM can still happen. Mutable parts of system classes such as static

fields and methods can leak object references. Little details have been provided about

the harm of those interferences.

According to authors, better isolation is achieved by the Multitasking Virtual Machine.

The idea of MVM is to share the application code whenever possible and replicate the

code only when needed. In contrast to Class loading mechanism which do not share

code enough and replicate too much.

To summarize, the isolation problem is not well explained by the authors. No example

has been provided about the isolation. The consequences of isolation problem are also

not well explained.

3.4 Author’s suggestions to the problems

3.41 Unsafe thread termination

According to the author’s suggestion [1], the system should consider running the

untrusted code as a separate process in its own Java Virtual Machine if the safe

termination is an issue for the container. Process states can be tracked by the system

where thread can not. Therefore they can be monitored and controlled by the

operating system more effectively. Since each process is running on their own virtual

machine, the untrusted threads and the normal threads are more isolated.

Author did suggest that this approach would greatly increase startup overhead and

increase use of system memory because of the additional process. Author however

mentioned little about the situation where untrusted thread force to run within the

same JVM with normal threads duel to the limitation of memory space. Off course

there is no suggestion for that particular situation as well.

3.42 Insufficient Isolation

The insufficient isolation between threads provides the opportunity for the malicious

threads to start a denial-of-service attack for other applications. According to author’s

example, malicious thread could hijack the shared system class such as finaliser queue

which may invoke the garbage collector. Garbage collector is used to reclaim memory

from objects no longer in use and returning it to the system [2]. When garbage

collector is invoked, all the other threads will be suspended while it runs. No

explanation and solution has been given by the user except a reference to the other

people’s work. The authors never mentioned the prevention of the denial-of-service

attack which will be explained in detail based on another academic paper.

3.43 Lack of resource control

Author did suggest the access to the CPU should be controlled, which prevents one

thread starves other threads within the same JVM. The solution to that is running each

process in its own virtual machine. How can we manage the resources under the

situation where only one JVM can be used and all the threads include trusted and

untrusted are forced to run within the same JVM? Author gave no clear explanation of

his own problem.

To summarize, authors gave a detailed description of the problems that they found.

Suggestions made by the authors are not explained in details, which can not be very

helpful to the reader. More importantly, many of the problems have already been

foreseen before this paper was published.

4. Critical comment one: Authors review and suggestions are not well

explained

Three problems presented in the paper [1] have been foreseen by the book [3]

“Securing Java” by Gary McGraw and Edward W.Felten. The most important thing is

that in paper [1] authors did not explain the harms that those security issues can cause.

The main aim in this paper [1] is to examines the risks associated with Java threads

that run untrusted code and presents existing research solutions. Obviously they did

not present all the potential problems and the existing solutions. McGraw and Felten

did a great job foreseen the potential threats and ways to solve the problems. Yet

Herzog and Shahmehri never referenced their work. Based on the comparison

between the two works, McGraw and Felten gave more details on problems and well

explained in solutions.

Gary McGraw and Edward W.Felten categorized the potential Java threats into four

major attacks.

System Modification: This is considered the most severe attack by the Author. It can

be implemented through Java applets which can then modify system through the

browser. The Java defence against this kind of attack is however very strong.

Invasion of Privacy: This kind of attack can be also implemented through applets

which can disclose private information of the user to the public. The consequence of

this attack is considered moderate to the user and has strong defence from Java.

Denial of Service: Consider to be serious attack by the author. This attack can

bring a system to a standstill. Malicious applets can achieve this by make resources

unavailable which then require the system to be rebooted. The defence against this

kind of attack is weak.

Antagonism: This attack basically annoys the user by making unwanted sound

through the speaker or displaying weird pictures on the screen. The consequences of

these attacks are considered moderate by the author and Java has weak defence

against this kind of attacks.

From the four main attacks summarized by McGraw and Felton, we can easily

discover the similarities of findings between [1] and [4]. System Modification attacks

is generally caused by the lack of isolation between threads because lack of the

isolation between threads could allow malicious threads to modify the system. Denial

of service attacks can be caused by the unsafe termination and resource control

problem because its attack is based on holding up the resources or running malicious

thread infinitely which prevent other threads running. On top of that, McGraw raised

the issues such as the invasion of the privacy and Antagonism. The book by McGraw

and Felton is published at the year of 1999. The paper published by Herzog and

Shahmehri is published at the year of 2004. The security has already been foreseen by

McGraw and Felton. Which in later sections of their, they have provided details of

defence against those attacks with comprehensive explanation and real Java code.

Herzog and Shahmehri in the other hand published the similar content and provided

little explanation and example five years later after McGraw and Felton’s book.

The solutions provided by McGraw and Felton to count those four attacks are

following:

System Modification: According to author’s opinion [4], system modification attacks

have not yet been seen outside the lab. Because Java has a sandbox security

mechanism which means all the untrusted code is contained inside the sandbox. Once

a malicious thread is inside the sandbox, it does not have the permission to modify the

system such as writing files to the local drive. This approach limits the harm that a

malicious thread can do. This is one of the reason attacks based on Java language is

not widely implemented. Security problem however still exists which can not be

overlooked.

Invasion of Privacy: This kind of attacks typically implemented by forging the mail.

Outsider can gain enough information from the user by forging the mail through

malicious threads. The defence from Java against this kind of attack is strong because

the sandbox security mechanism. Once the thread is contained within the sandbox, it

can not reach the file I/O. However if the malicious attack is implemented by a Java

applet, it always have a channel open back to the host which it can send all the

information it got from the threads within the same container. Defence such as

disabling the network ports which prevents the applet send back the useful

information to the host can be effective depends on the situation.

Denial of Service

Denial of service attack is the most common Java security concern. This is because it

is easy to implement and current security model has little defence against this threat.

Authors have listed few examples of Denial of service attacks:

 Completely filling a file system

 Using up all available file pointers

 Allocating all of a system’s memory

 Using all of the machine’s cycles(CPU time) by creating many high priority

threads

Fortunately the harm done by this attack is considered to be moderate because by

killing the process or at most reboot the system could stop malicious threads consume

all the system resources. Nothing in the system can be changed by this attack since the

malicious threads are contained inside the sandbox.

Antagonism

The best solution suggested by the user is to just shut down the application that

annoys you. This approach will not cause any inconsistency simply because those

attacks are not harming your system. Restart the application and avoid running the

annoy applet again seems to be the best solution.

By comparing the paper by Herzog and Shahmehri [1] with the book by McGraw and

Felten[2], I found McGraw and Felten’s Book covers more Java thread security issues

than the paper published by Herzog and Shahmehri. Herzog and Shamehri never

mentioned the attacks such as Antagonism and Invasion of Privacy. Also the

suggestions such as Lack of resource control by Herzog and Shahmehri are not well

explained in details and no useful references have been given to some of the solutions.

(For example no reference has been given by the authors to the suggestion “Lack of

Resource Control” in Page 27). The paper published five years later than the book by

McGraw and Felten, which means they have plenty of time to review the old ideas. At

least they can cover all the issues which have been pointed out in the past and give

detailed suggestions and references to the problems.

5. Critical comment two: The damage is not critical to make major changes

of JVM

From the above section, we can see the two attacks (Denial of service and

Antagonism) that are most likely to be successful but they can do little harm to the

system [4] . The two attacks that cause harms to the system can be defended by Java

security mechanism (System modification and Invasion of Privacy). This is one of the

main reasons why people often overlooked the Java security issues. One question is

how important those security issues are in the real life. The motivation behind Herzog

and Shahmehri is those issues can be very critical, therefore needs to spend a lot of

effort change the way how threads work. Based their suggestions, Java needs to

redefine its security policies, re construct existing security managers and restrict the

ability of threads by isolate the threads. Should we ask ourselves, do we need to spend

a lot of effort on some security issues that can do limited harms? If they do cause

serious harms, show us the evidence. McGraw and Felton listed few things what

Untrusted services can and can not do.

Untrusted Java code can not do (most important parts):

 Read, write, delete and modify files on the client file system

 Create a directory on client file system

 List the contents of a directory

 Check to see whether a file exists

 Obtain information about a file

 Create a network connection

 Listen for or accept network connections

 Obtain user’s username or home directory name through any means

 Define system properties

 Make the Java interpreter exit

 Create a SecurityManager

 Create a ClassLoader

Etc…

Untrusted Java code can do

 Access to the CPU of the client machine

 Access to the memory which to build objects

 Access to the web server which this code is downloaded

Based on McGraw and Fenten’s opinion [4], there are little things that an untrusted

code can do which is critical. Indeed we can not force the threads to restrict the usage

of the computer resources because it would greatly reduce the flexibility and ability of

threads. After all, who needs an applet in the browser that can’t do anything? The

harm is limited. Therefore even if an attack is successful we can recover it relatively

easy so it is unnecessary to reduce the efficiency of threads by enforcing more rules

on it. The most harmful attack with a high success rate is the denial of the service

attack. If we assume the attack is successful, we don not have to terminate the thread;

we can just terminate the whole process without effecting the operating system and

file system. If Herzog and Shahmehri think the problems are critical, they should at

least identify the consequences of those attacks.

6. Critical comment three: Never mentioned untrusted threats prevention

One of other things that Herzog and Shahmehri never mentioned is how to avoid the

situation untrusted code can modify other threads within the same JVM. Author

explained in few sentences which suggest we should keep them isolated and with a

fine grained thread access control. A normal thread access control either gives all

threads the same permissions or no threads been given the permission. A fine grained

thread access control focus on granularity of thread group which gives different

threads with different permission. This approach separates trusted and untrusted

threads into two groups which untrusted threads are given minimal access permission.

This approach is never explained in details or referenced to additional readings. The

interactions between threads are very important security issue which author noticed.

The reason why they did not go in deep remains unknown.

The co – author of the [2] E.W.Felten published an academic paper in 1997[3] which

specifically addressed this problem. Traditional JVM has two properties which allow

the check to be successful:

 Every class in JVM which came from the network is loaded by classloader and

included a reference to that classloader. Local class has a special system

classloader. So they can be distinguished just by looking at the classloader.

The class from network generally considered to be untrusted.

 Every frame on the call stack includes a reference to the class running in that

frame. This property can be used for debugging and diagnostic. Untrusted

code can be then monitored by the system.

Once the classes are distinguished, different security policies are then applied to

different groups of threads [3]. However despite threads are distinguished, they are

still contained within the same sandbox. Both trusted and untrusted codes are not

allowed to write, read and perform other useful operations. To address this

inflexibility, Authors suggest three strategies to solve the problem.

Capabilities: According to [3], a Capability is an unforgeable pointer to a controlled

system resource. Based on security policy, a particular thread is given the capabilities

for whatever resources the thread is allowed. This way it is more flexible to assign the

permissions to different group of threads.

Extended stack introspection: Three basic primitives are necessary to use this

approach: enablePriviledge (target), disablePriviledge(target), checkPriviledge(target).

When a critical resources need to be protected, a target such as untrusted code needs

to be defined for resource access and the system must call checkPriviledge(target)

before starts the untrusted code. EnablePriviledge is called when checkPriviledge is

passed which allows the target to access the particular resource. And

disablePriviledge is called after the target has finished using the resources.

Namespace Management: In OO languages, classes represent the resources such as

file system and network. For example “File” class represent the file resources. By

applying namespace management, we could make this file class invisible when

untrusted code is running which prevents the attacking on the file system. More

detailed is explained in the paper [3].

7 Conclusions

Although Herzog and Shahmehri have provided a good overview of the potential

threats when running untrusted threads within the same JVM with normal threads. I

have several critical comments after reading the paper. Herzog and Shahmehri have

suggested large improvements of JVM are needed to ensure the system resources are

well controlled and interactions between threads are more isolated. They never

mentioned the performance issue and the effort need to make all that happen. Based

on [4], we found that the damage the potential security problems raised by Herzog

and Shahmehri can do to the system is very limited due to the protection of sandbox

mechanism. Even if one of the attacks is successful, system is able to recover with

limited cost. The serious attack suggested by Herzog and Shahmehri that can do

severe harm is rarely seen and hard to be successful. Therefore at this point we do not

need to change entire Java structure to meet Herzog and Shahmehri’s requirements in

order to defend the potential Java threats. In addition Herzog and Shahmehri

published the paper in 2004 and all the problems they presented are foreseen by

McGraw and Felten who published the book in 1997. McGraw and Felten provided

real code examples and ways to defend the threats which Herzog and Shahmehri

mentioned little. Therefore there is an ethical problem here. Is it ethical to use other

people’s ideas and publish the paper as their own research findings? The paper [1]

published five years later than the book [2] which give Herzog and Shahmehri plenty

of time to come up with better suggestions and exploit new Java threats.

Herzog and Shahmehri spend many pages explaining the importance of resource

control and isolation. The suggestion they provided is not detailed enough to persuade

reader to believe their suggestions could counter those kinds of attack. [3] Proposed a

comprehensive overview of this problem and designed three strategies to defend and

prevent this kind of attack.

Acknowledgement:

I like to thank Mr. Clark Thomborson for his guidance and suggestions for this term

paper. I also like to thank my friend Gilbert Notoatmodjo for his assistance on

grammar checking of this report. My warm thanks go to Jonathan Wright who

critically reviewed my paper and made me restructure the whole thing!!

Reference

[1] A. Herzog, N Shahmehri, "Problems Running Untrusted Services as Java Threads", in

Certification and Security in Inter-Organizational E-Services, IFIP 18th World Computer Congress, ed.

Nardelli et al., Aug 2004, pp. 19-32.

[2] A.Silberschatz, P.Galvin, “Applied Operating System Concepts 2nd edition” Chapter 5

[3] Dan S. Wallach, Dirk Balfanz, Drew Dean, Edward W. Felten

October 1997 ACM SIGOPS Operating Systems Review , Proceedings of the sixteenth ACM

symposium on Operating systems principles, Volume 31 Issue 5

[4] G. McGraw, E,W, Felten. “Securing JAVA Getting Down to Business with Mobile Code”.

